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The central features of lihear and nonlinear disturbance growth in the unstable shear 
layer, mechanisms of impingement of the resultant vortices on the edge, induced force 
on the wedge, and upstream influence in the form of induced velocity fluctuations 
a t  separation are examined by simultaneous visualization, velocity, and force- 
measurement techniques. 

The nature of the vortex-wedge interaction, and the associated force on the wedge, 
are directly related to the induced velocity a t  the upstream separation edge, thereby 
providing the essential ‘feedback ’ for the self-sustained oscillation. Velocity fluctu- 
ations a t  the upper and lower sides of the separation edge tend to be R out of phase, 
a condition that is maintained along the outer boundaries of the downstream shear 
layer. Moreover, the phase between velocity fluctuations at separation and 
impingement satisfies the relation 2nz, where ?z is an integer. 

The shear layer downstream of the separation edge initially forms an asymmetric 
wake, which evolves into large-scale vortices, all of which have a circulation 
appropriate to the high-speed side. The disturbance amplification associated with the 
high-speed side dominates from the separation edge onwards, precluding development 
of instabilities associated with the low-speed side. 

Regardless of the initial amplitude of the disturbance induced a t  the separation 
edge, the same saturation amplitude is attained in the downstream (nonlinear) region 
of the shear layer, underscoring the fact that variations in force amplitude a t  the 
wedge are dominated by the type of vortex-edge interaction mechanism. The 
sensitivity of this interaction to  small offsets between the vortex centre and the 
leading edge entails that  jumps in frequency of oscillation are also associated with 
jumps in the force amplitude. 

1. Introduction 
The impingement of separated shear layers on solid boundaries generates a 

feedback mechanism, which sustains oscillations at selected frequencies from within 
that band of frequencies at which the shear layer is unstable. Owing to  the instability 
of the shear layer small vorticity perturbations near the separation region are 
amplified, as they travel downstream, into vortex-like structures. The induced force 
associated with the impingement of these vortical structures on the solid boundary 
produces an upstream influence that modulates the sensitive region of the shear layer 
near separation, in turn giving rise to new vorticity perturbations. 

Switzerland. 
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These oscillations involving a spectrum of configurations such as the j e k d g e ,  
jet-orifice, and mixing-layer-edge have been of interest for over a century. Recent 
reviews by Karamcheti et al. (1969), Hussain & Zaman (1978) and Rockwell & 
Naudascher (1979) describe progress in the study of this class of oscillations, but 
several aspects await clarification. Of these, the induced force on the impingement 
edge (or wedge) is central; despite Powell’s (1961) recognition that the force is 
directly associated with the dipole-like behaviour of the disturbances emanating 
from the domain of the edge and influencing the upstream region of the flow, the 
detailed nature of the incident unsteady flow-wedge interaction has remained unex- 
plored. The magnitude of the localized loading on the edge and its variation with 
impingement length, as well as with transverse location of the edge with respect to 
the incident unsteady shear layer, need to be characterized. When the incident 
unsteadiness takes the form of coherent vortical structures, the unsteady flow- 
leading-edge interaction is expected to involve various sorts of deformation of the 
vortical structure upon its impingement with the edge. Moreover, the possibility 
that jumps in oscillation frequency are associated with jumps in induced force, as 
well as with a change in vortex-dge interaction mechanism, should be addressed. 

Another aspect to  be examined is the degree of upstream influence associated with 
the force exerted on the wedge. Even for the case of ‘pseudosound’ (Ffowcs Williams 
1969), whereby the distance between shear-layer separation and impingement is much 
less than an acoustic wavelength, the amplitude of the velocity perturbations induced 
a t  the edge of the sensitive region of the shear layer near separation may bear a 
relation to the magnitude of the force a t  the edge. Whether this initial fluctuation 
level at separation typically influences the amplitude of the force exerted on the down- 
stream edge, or simply undergoes nonlinear saturation upstream of the impinge- 
ment edge, thereby producing essentially identical conditions of unsteadiness (i.e. 
vortices) approaching the wedge irrespective of the initial fluctuation level, needs to 
be resolved; that  is, the character of the ‘amplifier’ between separation and 
impingement as a function of its ‘input level ’ requires clarification. 

Also addressed is the problem of finding a phase condition, or the so-called ‘phase 
criterion ’, which, when incorporated with linear stability theory, permits prediction 
of the frequency of oscillations. A phase criterion simply specifies the necessary phase 
shift between the velocity fluctuations a t  separation and a t  impingement such that 
the oscillations are self-sustained. Table 1 is illustrative of contradictory phase 
criteria found in the literature. Differences in these criteria (shown in table 1 )  are most 
probably related to differences in the location (within the shear layer) at which the 
measurements were taken. Therefore, further consideration of streamwise phase 
variations of velocity fluctuations measured within the shear layer, as well as a t  its 
upper and lower edges, are required to clarify these differences. 

With regard to perturbations in the sensitive region of the shear layer (i.e, a t  the 
trailing edge), the phasing between fluctuations at the upper and lower sides of the 
trailing edge is critical; i t  can be expected to control the disturbance growth 
immediately downstream of the trailing edge. I n  turn, the phase between the upper 
and lower regions of the edge will be influenced by the downstream dynamics of 
the flow - that  is, the upstream influence of downstream unsteadiness must be 
accounted for. 

This investigation focuses on some of these unresolved aspects. Following an 
examination of the overall nature of system oscillations is an assessment of the 
evolution of the mean and fluctuating velocities, as well as an evaluation of 
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Phase criterion Llh 
Configuration Investigator( s) (n = integer) 

Cavity flow Sarohia (1977) 
Rockwell & Schachenmann (1982) 
Knisely & Rockwell (1982) 

J e h d g e  Brown (1937) 
Richardson (1931) 
Powell (1961) 
McCartney & Greber (1973) 

Jet-wall Ho & Nosseir (1981) 
Mixing-layer-edge Hussain & Zaman (1978) 

n+g 
n 
n 
n+a 
n 
n+$ 
n-$ 
n 
n + i  

TABLE 1 .  Previously reported ‘phase criteria ’ for self-sustained oscillations 
of impinging shear layers 

streamwise and transverse phase distributions. Special emphasis is given to the 
phasing between upper and lower regions of the trailing (separation) edge and to the 
phase between velocity fluctuations a t  separation and a t  impingement. Thereafter, 
the nature of the induced force is addressed together with its relation to the level 
of velocity fluctuations at separation and a t  impingement. The vortex-dge 
interaction region is then examined in more detail to ascertain whether changes in 
the amplitude of the wedge force, as the impingement length is varied, are due 
primarily to differences in the velocity fluctuation level associated with the incident 
vortex, or to differences in localized vortex-edge interaction mechanisms. The final 
section deals with the applicability of linear stability theory in describing some of 
the main features of the system oscillations. 

2. Experimental system 
2.1. Mixing-layer-edge model 

During the initial period of designing the test section, attempts were made to generate 
the mixing layer by placing splitter plates and flow-resistance combinations of 
different shapes in varying arrangements. The outcome, which proved to be very 
satisfactory, is shown in figure 1.  This arrangement provided an optimum combination 
of pressure drop along the high- and low-speed sides, which ensured that the leading 
edge of the divider plate was compatible with the stagnation streamline. In  addition, 
the mildly favourable pressure gradient on both the high- and low-speed sides 
precluded instability of the boundary layers. 

Concerning the wedge assembly, which is shown in figure 1, a 30° included-angle 
wedge was placed downsteam of the splitter plate. The wedge was attached to a very 
long Plexiglas plate of equal thickness by means of two side pivots, such that it could 
rotate freely and with minimum friction. This arrangement eliminated any upstream 
influence from the wake of the wedge, thereby simulating the impingement of a 
vortical structure on the leading edge of a semi-infinite plate. The wedge-plate 
assembly was suspended by three brass supports from a carrier that was placed on 
the top of the sidewalls of the test section. Since the small dimensions of the wedge 
provided insufficient space to fit pressure transducer(s), a highly sensitive strain-gauge 
system was developed to  measure the total (integrated) fluctuating force on the wedge 
(Ziada 1981). As shown in figure 1 ,  the wedge was held in the mid-position by two 
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Insulator for Main test 

Carrier Insert test 

stainless-steel vertical wires under tension. The bottom end of the wire was tightened 
to a brass rod connected to  an extension from the downsteam support of the wedge 
assembly, while the upper end was connected to the strain-gauge system, which was 
mounted on top of the carrier. Tests to  determine the natural frequency of the wedge 
system revealed it to be 14 Hz in water and 35 Hz in air, giving an added-mass factor 
of 5.25. The frequencies of interest were about 3.5 Hz for the fundamental and about 
7 Hz for the first harmonic. Amplitude and phase distortions of the force signal a t  
the frequency of the fundamental mode of interest here were therefore estimated to 
be 5 yo and 1.9' respectively. 

I n  order to bypass the sidewall and floor boundary layers generated upstream of 
the test section, the flow divider and the wedge were assembled inside a secondary 
test section, which was inserted, as shown in figure 1 ,  into the main test section of 
a free-surface, closed-circuit water channel. The main test section, 30.5 cm wide by 
45.7 cm deep, as well as the insert test section, 24 cm wide, were of Plexiglas to 
facilitate flow-visualization studies. Extensive studies were carried out to ascertain 
that, for the range of parameters considered in this investigation, the free surface did 
not influence the basic nature of the oscillation. Instability fluctuations induced in 
the shear layer were found to drop off exponentially as the free stream was 
approached, in accordance with linear stability theory. I n  the free stream, organized 
fluctuations were undetectable, even when the lock-in amplifier was used to enhance 
the detection capability. 

2.2. Instrumentation 
Extensive velocity measurements were taken by means of DISA hot-film probes 
(55Tll and 55R14) using a DISA 55DOl anemometer in conjunction with a DISA 
55M25 linearizer. Velocity and force signals were filtered and amplified by Krohn-Hite 
Model 3700 bandpass filters and class A variable-gain amplifiers. The nominal filtering 
frequencies were 0 2  Hz and 20 Hz for all measurements, whereas the typical 
frequencies of interest were in the range 2.4-3.7 Hz. Spectral analysis of the velocity 
and force signals was performed with the aid of a PDP-8 minicomputer. Phase 
measurements were carried out by means of an  Ortec phase-lock wave analyser with 
low frequency, high-stability and high-resolution options. The velocity signal was fed 
to the signal channel, whereas the force signal was fed to the reference channel. 
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2.3. Flow-visualization techniques 
Visualization was carried out using the hydrogen-bubble and dye-injection methods. 
For the hydrogen-bubble method, a vertical platinum wire (0002 in.) was used in a 
manner that permitted its positioning a t  any streamwise location, whereas, in the 
dye-injection method, food colour dye was laid on the top surface of the splitter plate. 
The lighting arrangement, particularly critical for effective bubble contrast, is 
described in detail in Ziada & Rockwell (1982a). The time-dependent evolution of 
the visualized vortex-wedge interaction and the instantaneous force fluctuation 
(displayed on a storage oscilloscope) were recorded simultaneously on a split-screen 
Instar television system having vertical and horizontal sweep frequencies of 120 Hz 
and 25.2 kHz, a resolution of 250 lines, and a framing rate of 120 frames per second. 
Photos shown herein were obtained by taking 4 in. x 5 in. Polaroids of the image on 
the video screen. 

2.4. Flow parameters 

The relevant dimensions ofthe mixing-layer-edge arrangement are shown in figure 2. 
All measurements were taken a t  a flow speed of 18.35 cm/s at the high-speed side 
(U,) and velocity ratio U J  U,  = 2-85 f 0.05. These conditions provided extremely 
well-defined vortices in the downstream mixing layer with laminar boundary layers 
a t  separation having momentum thicknesses O,, = 062 mm and Ooz = 068 mm, Oo 
being their sum. The corresponding Reynolds number was 

Re(AU, 0,) = (Ul- U2)Oo/v  = 157 or Re(U,, 6,) = UIOo/v = 239. 

Other relevant parameters (see figure 2) had the following values: H,/B,, = 126; 
H,/O,, = 115; b/Oo = 3; l ’ /Oo  = 350, T/Oo = 15; 15 < L/O, ,< 150. At this speed, the 
streamwise fluctuation velocity in the free stream was about 006 yo. Extensive 
spanwise flow visualization showed that the flow field was essentially two-dimensional 
along the entire length from separation to  impingement for all impingement lengths 
examined. 
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FIGURE 3. Typical spectra of induced force F,,,(f)/df versusf on wedge for 
different impingement length LIB,,. 

3. Overall nature of oscillations 
3.1. Frequency and amplitude of induced force 

The overall nature of system oscillations typical of self-sustained oscillations of 
impinging shear layers is characterized by the existence of so-called ‘stages’ of 
operation. During each stage, the fundamental frequency ,8 decreases continuously 
with increases in impingement length L. At a certain length a frequency jump to a 
higher frequency occurs, marking the beginning of a new stage. Thereafter, further 
increases in L result in a gradual decrease in ,8 until the next frequency jump. These 
characteristics were quantified in this investigation by measuring the induced force 
on the edge. Representative frequency spectra of the induced force are depicted in 
figure 3. The relative magnitude of the spectral peak, as well as the dimensionless 
impingement length, are shown on each spectrum. Each stage of the observed four 
stages of oscillation is illustrated by three frequency spectra: the first spectrum is 
a t  the beginning of each stage (i.e. just after the frequency jump from the previous 
stage); the second spectrum is roughly at the middle of the stage; and the third 
spectrum is a t  the end of the stage. 

For impingement lengths shorter than those corresponding to figure 3 (L/8, < 29) 
no oscillations were observed. Flow-visualization studies revealed that the separated 
shear layers from the top and bottom of the trailing edge experienced reattachment 
a t  the leading edge of the wedge without showing any sign of oscillatory behaviour. 

The spectra shown in figure 3 indicate that the system oscillations are of a highly 
organized nature : most of the fluctuation energy is concentrated a t  the fundamental 
frequency ,8 = fO,/V,, where Brn is the characteristic momentum thickness. As will 
be shown by means of flow visualization, this frequency corresponds to the frequency 
of vortex formation upstream of the edge. Also, a weak energy concentration can be 
seen a t  the frequencies of the higher harmonics (2p, 3p), most evident in the first two 
stages ; this presence of the higher harmonic components is due to the nonlinear nature 
of the shear-layer evolution (Ziada & Rockwell 1982b). 
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FIGURE 4. Amplitude I$,, and frequency f of the dominant spectral peak of force fluctuations as 
functions of impingement length LIB,: (a)  dimensionless frequency ,8 = fS,/U, versus LIB,; ( b )  
normalized force ~ m s / ( ~ m s ) m a x  versus L/B,. 

The magnitudes and frequencies of the dominant spectral peaks from figure 3 are 
plotted against impingement length in figure 4. Distinct stages of operation, 
separated by frequency jumps, can be discerned - successively higher stage numbers 
relate to  longer impingement lengths. Each frequency jump is associated with a 
sudden drop in the force amplitude, the magnitude of this drop decreasing at larger 
values of impingement length. The maximum force amplitude in each stage is also 
seen to decrease with longer impingement lengths. 

For the oscillations to be self-sustained, two compatibility conditions have to be 
satisfied. First, a constant phase shift has to be maintained between the velocity 
fluctuations a t  separation and a t  impingement. Secondly, the frequency of oscillation 
has to  be in the neighbourhood of the frequency Pmax a t  which the shear layer is most 
unstable. As the impingement length is gradually increased, satisfaction of the phase 
condition requires a corresponding increase in the wavelength of the instability wave. 
Thus, according to the stability theory (Michalke 1965) the frequency of oscillation 
gradually decreases. The result is that the frequency P drifts away from P,,,, as 
indicated in figure 4 (a) .  At a certain length of impingement, a higher frequency, which 
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FIGURE 5.  Visualization of mixing-layer-wedge interaction patterns for different impingement 
lengths corresponding to oscillations in stages 1-111: (a) LIB, = 42, stage I ;  ( b )  L/O, = 62, stage 
11; ( c )  LIB, = 81, stage 111. Re = AUB,/v = 157. 

is closer to p,,,, can satisfy the phase condition through the addition, as it were, 
of a single wavelength to  the instability wave between separation and impingement, 
causing a frequency jump, as shown in figure 4 ( a ) .  This explains the physical 
mechanism through which the frequency of oscillation adjust itself to variation in 
the impingement length. As for the relationship between the force amplitude and the 
impingement length depicted in figure 4 ( b ) ,  the physical mechanism involved is by 
no means obvious. This aspect is addressed subsequently. 

3.2. Flow visualization of the system oscillations 

Owing to the finite thickness of the blunt trailing edge a t  separation, the free shear 
flow first starts as an  asymmetric wake and then gradually evolves into a mixing layer. 
This might lead one to think that the two separating shear layers independently roll 
up into an asymmetric vortex street. However, this was not the case, as can be seen 
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FIGURE 6. Visualization of vortex-wedge interaction patterns for different impingement lengths 
corresponding to oscillations in stages I-IV. 

from the flow-visualization pictures in figure 5. The separated shear flow was found 
to evolve into a single row of well-defined vortical structures having circulation 
appropriate to the high-speed side owing to the sufficiently thick boundary layers 
a t  the trailing-edge. Extensive flow-visualization studies of the trailing-edge flow 
region, using dye and hydrogen bubbles, revealed the complete absence of vortex 
formation in the shear layer on the low-speed side. 

Scrutiny of photos (a)-(c) of figure 5 reveals that each successive stage contains 
one more vortical structure between separation and impingement than the previous 
stage ; for instance, photo ( c ) ,  relating to stage 111, reveals one more vortex than photo 
( b ) ,  relating to stage 11. This illustrates the increase in the number of wavelengths 
of the instability wave between separation and impingement entailed in frequency 
jumps to higher stages. 

The close-up visualization photos of figure 6, taken a t  the instant when the induced 
force on the wedge attained its maximum negative value, show that the incident 
vortex becomes more 'mature', i.e. the roll-up process becomes more developed, a t  
larger values of impingement length. Moreover, as can be seen by examining photos 
(bf-(d), the centre of the vortex is lower, relative to  the leading edge, a t  longer 
impingement lengths, agreeing well with the trend of the theoretical trajectories of 
vortex impingement upon the leading edge of a semi-infinite plate (Rogler 1974). As 
will be discussed, the variation of the transverse offset between the centre of the 
incident vortex and the leading edge as the impingement length is varied has an 

11 F L M  I24 
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FIGURE 7 .  Streamwise evolution of mean-velocity distribution ~ ( y ) .  

important bearing on the relationship between the force amplitude and the impinge- 
ment length. 

4. Mean and fluctuating velocity field 
For carrying out the velocity measurements, an impingement length LIB, = 37 was 

selected as optimal. At that  length (corresponding to stage I operation) the induced 
force on the edge is relatively high, indicating a strong mixing-layer-edge interaction, 
away from the occurrence of a frequency jump. Important for our consideration is 
the fact that initial momentum thicknesses (corresponding to laminar boundary 
layers) on the high- and low-speed sides of the splitter plate are nearly equal 
(Ool = 0062 cm and BO2 = 0068 em). Consequently, differences in dimensionless 
frequency parameter f6,lU will be due only to  the difference between U,  and U ,  a t  
a given frequency of oscillation. 

Figure 7 depicts the streamwise evolution of the mean-velocity profile. Shortly after 
separation, the separated shear layers from the top and bottom sides of the splitter 
plate merge and form an asymmetric wake profile, which continues to  change in shape 
until a mixing-layer profile is achieved. 

At each streamwise station x lL ,  spectral analysis of the streamwise velocity 
fluctuation $2 was performed a t  different transverse (y) locations. The spectral peaks 
a t  the fundamental frequency /3 are plotted in figure 8, giving the streamwise 
evolution of the distributions of the streamwise velocity fluctuations (i.e. distributions 
of ii(/3)rms). As shown by Ziada (1981), the shape of these distributions at large z/B, 
is well approximated by the variable-vorticity-concentration model of Stuart (1967). 

The streamwise evolution of the two maxima of the fluctuating velocity distrib- 
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FIauRE 8. Evolution of distribution of normalized fluctuation velocity 
G(&,,JCJ1 in streamwise direction. 

utions is highlighted in figure 9. Open symbols represent the streamwise growth of 
the maximum r.m.s. fluctuation velocity (C(P)M1) at the high-speed side, whereas solid 
data points symbolize that (C(&,) a t  the low-speed side. I n  the immediate vicinity 
of separation, ii(P)Ml exhibits an exponential growth followed by a region of nonlinear 
amplitude saturation, then decays as i t  approaches the wedge-flow region. For the 
low-speed side, C(/3)Mz remains virtually constant over a distance of 9O,,, after which 
it starts growing rapidly with a growth rate even higher than that for ii(P)M1 ; in fact 
i t  appears to  be driven by the dominant fluctuation on the high-speed side. This 
drastic difference in growth rates for the near-field region can be explained using linear 
stability theory (Michalke 1965). At the streamwise location corresponding to the 
centre of the linear-growth region of C(P)M1 (figure 9) the momentum thicknesses of 
the shear layers a t  the high- and the low-speed sides (Om1 and Om, respectively) can 
be used to  calculate the dimensionless frequencies PI and P2 (P, =fern,/ U,  = 0-0155 
and pz = fOmz/Uz = 0-045). According to the linear spatial stability theory, P1 
approximates that frequency a t  which the shear layer is most unstable 
(Pmax = 00165), whereas PZ is found to lie outside the band of frequencies at which 
the shear layer is unstable (0 < /3 < 004). I n  other words, the high-speed-side shear 
layer is highly unstable a t  the frequency of the mixing-layer-edge operation, whereas 

11-2 
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FIGURE 9. Streamwise growth of fluctuation velocity maxima C(p)M1 and C(P)MB. 

disturbances a t  this frequency do not, a t  least initially, experience amplification in 
the shear layer on the low-speed side. As shown in figure 9, there is excellent 
agreement with linear stability theory. 

Further downstream ( x / L  = 0.35), the shear layers merge into one another. In  that 
region, stability analysis carried out for each layer separately is unjustified. Only 
stability analysis of local velocity profiles is appropriate. Miksad ( 1972) performed 
such an analysis for an asymmetric wake-type flow. Two types of instability arose. 
‘Type I [no relation to our stage I!] instability’ was associated with the inflection 
point a t  the high-speed side, and ‘type I1 instability’ with that on the low-speed side; 
the type I instability was found to  have much higher growth rates and occur over a 
much wider range of frequencies than the growth rates and frequency range associated 
with type I1 instability. Miksad therefore speculates that  the high-speed-side shear 
layer dominates, a contention supported by the complete absence of type I1 
instability in his experiment. These findings are in agreement with the present 
observation, namely that instability of the high-speed-side shear layer dominates the 
oscillation characteristics. 

5. Phase variations 
In  the following, the nature of phase distributions across the shear layerf is 

discussed, especially with regard to  the region immediately downstream of separation. 
Then, phase variations in the streamwise directiont are examined and compared with 
those of table 1 .  
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FIGURE 10. Initial conditions a t  the trailing edge of the splitter plate (r = 0) : ( a )  mean-velocity 
profile ~ ( y )  ; ( b )  transverse distribution of fluctuation velocity tZ(/?)rms; (c) transverse distribution 
of fluctuation velocity phase $lita,, LIB, = 37, corresponding to stage I oscillation. 

5.1. Transverse phase variations at trailing edge and in downstream shear layer 
Figure 10 shows details of the initial conditions at  separation (for LIB, = 37, 
corresponding to an oscillation in stage I), including mean-velocity profiles, distrib- 
utions of .ii.(P)rms, and phase distributions of .it@). Phase data are referenced to the 
phase of .it(@) in the free stream at the high-speed side of the flow. The phase 
relationship between the velocity fluctuations on both sides of the splitter plate, 
extracted from the data of figure lO(c) ,  is presented in figure .11 ( a ) .  At separation, 
the phase distribution of 2(P) a t  the high-speed side is approximately 180° out of phase 
with that a t  the low-speed side. I n  other words, at separation, the velocity fluctuation 
at a point on the high-speed side is virtually n out of phase with that at its mirror image 
on the low-speed side. This result, which persists through stage I1 operation, as can 
be seen in figure 11 ( b ) ,  would appear to be independent of the laminar-boundary-layer 
characteristics. The maximum deviation from this phase relationship between the 
velocity fluctuation on both sides of the splitter plate is about 8 yo and occurs for small 
values of Iyl, i.e. inside the boundary layer. For large values of IyI, outside the 
boundary layer, the deviation reduces to about 3 yo. 

The overall phase difference across the boundary layer is in the range of 3O0-5Oo. 
This is very similar to  the theoretical and experimental findings of overall phase 
difference across forced laminar boundary layers (Hill & Stenning 1960). The relative 
insensitivity of the overall phase difference across the boundary layer to changes in 
either shape factor or frequency of oscillation in this experiment is also similar to 
that found for forced laminar boundary layers. This would seem to suggest similarities 
between the two cases; however, there is a major difference. Whereas in the case of 

t In the text that follows, distributions of phase of the velocity fluctuat,ion across the shear layer 
(y-direction) will be denoted as 'transverse phase variations', while t,hose in the streamwise 
(r-direction) will be termed ' streamwise phase variations '. 
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FIGURE 11. Phase relation between fluctuation velocity on either side of the trailing 
edge of the splitter plate at z = 0. 

an externally forced (laminar) boundary layer the amplitude of the free-stream 
fluctuation is virtually constant, in this experiment, the amplitude of the maximum 
velocity fluctuation ii(/3)M1 decays exponentially upstream of separation (figure 12). 
Consequently, the transverse scale (dimensionless y )  of the distributions of ii(P)rms 
and q5zi was found to be about an order of magnitude smaller than the corresponding 
scale of forced boundary layer (Hill & Stenning 1960). Clearly figures 10 and 11 show 
the upstream imprint of the downstream phasing of unsteady events across the shear layer; 
that is ,  the remarkably consistent phase diflerence of - n across the trailing edge i s  
driven by the downstream dynamics. That there must be compatibility between the 
trailing-edge dynamics and the downstream evolution is suggested by figure 13; the 
phase difference between oscillations at the upper and lower sides of the shear layer 
is maintained a t  a constant value of about n along the streamwise extent of the mixing 
layer. 



Mixing layer impinging upon an edge 32 1 

@;In 

FIGURE 13. Streamwise evolution of the phase distribution of the fluctuation velocity $c(y). 

5.2.  Xtreamwise phase variations 

The large variations in the transverse phase distribution shown in figure 13 clearly 
indicate that a proper criterion for streamwise phase measurements is crucial in the 
search for a universal phase law for self-sustained oscillations. The criteria to  be 
considered herein are : 

(i) phase variations measured along a y = constant line (y/b = 0, y/b = a, y/b = -a), 
designated $ ( O ) ,  $(t) ,  #(-a) respectively; 

(ii) phase variations measured along the loci of y-locations a t  which the r.m.s. 
velocity fluctuation is a t  a maximum (G(/3)M1 and G(/3)M, defined in figure 9), 
designated $(GM1) and #(GM2) ; 

(iii) streamwise phase distributions measured a t  the upper and lower edges of the 
shear layer (fi/Ul = 095  and t i /Uz = 0.95), designated $(095) and $(-0.95). 
The resultant phase distributions are shown in figure 14. It should be noted that, 
immediately downstream of separation (small x/O,), the velocity signal was very well 
defined except along the line y = 0. Extrapolation to x = 0 was necessary in this 
region. 

Only the phase distributions measured a t  the upper and the lower edges of the shear 
layer appear to have an obvious significance; they exhibit overall phase shifts 
between separation and impingement of about 2nn, and linear variations of phase 
in the streamwise direction. This is hardly surprising, since phase measurements 
within the shear layer encounter the problems of not only the high transverse phase 
gradients and phase distortions near separation and impingement, but also the 
increased contributions from the transverse velocity fluctuations v" in the regions 
where the mean velocity is low. Measurements a t  the edge of the shear layer are 
essentially uninfluenced by these effects. 

Phase distributions measured a t  the upper and lower edges of the shear layer in 
stage I1 were found to exhibit behaviour similar to that in stage I, further suggesting 
that only phase measurements a t  the edge of the shear layer would give a unique 
and generalized phase criterion for self-sustaining oscillations. The phase data plotted 
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in figure 15 illustrate that this is indeed the case. These phase data are measured a t  
the upper edge of the shear layer for several impingement lengths, through each of 
the four stages of operation. From these phase data it can be concluded that:  

(i) an appropriate overall streamwise phase criterion for self-sustaining oscillations 

(1) 
is 

where n is an integer ; 
(ii) the phase of the velocity fluctuation S along the edge of the shear layer varies 

linearly in the streamwise direction. Consequently, the disturbance phase speed c and 
wavelength A are virtually constant along the entire region from separation to 
impingement. 
These findings lead to the result L l A  = n. In  other words, the organized activity in 
the shear layer, charactkrized by growth and saturation of the disturbance, has a 
wavelength, or multiple of wavelengths, equal to the impingement length. 

From table 1 it can be seen that the result L l A  = n agrees with the findings of 
Rockwell & Schachenmann (1982), Knisely & Rockwell (1982), and Ho & Nosseir 
(1981), all of whose results are taken outside the shear layer. The term -a in 
McCartney & Greber’s (1973) theoretical result should, as they themselves note, tend 
to zero had they not for simplicity’s sake ignored minor terms in their analysis. 
Sarohia’s (1977) and Hussain & Zaman’s (1978) measurements were both taken inside 
the shear layer, Sarohia’s at the mouth of the cavity, Hussain & Zaman’s being 
extrapolated from measurements af maximum phase over an axial distance less than 
the impingement length. Thus, in view of the results shown in figure 14, the 
disagreement is not surprising. To be sure, measurements within the shear layer are 
important as well; their relation to those at  the edge of the shear layer deserves 
further attcntion. 

$ C ( Z  = L ) - & ( x  = 0) x 2nn, 

6. Nature of the induced force 
6.1. Effect of unsteady velocity amplitude upstream of impingement 

Measurements of the streamwise evolution of the velocity fluctuations ii(/3)rms can 
provide insight into the extent that Q near separation, S near impingement, induced 
force E’, and impingement length I, arc interrelated. Figure 16 depicts detailed 
measurements, taken in stage 11, showing streamwise evolutions of maximum S(/3)r,, 
(i.e. Z Z ( P ) ~ ~ ) ,  S(/3)M1 values a t  separation versus LIB,, and the variation of F,,, with 
LIB,. For purposes of illustration, the separation point (x = 0) in figure 16 is displaced 
to the left by an amount equal to the increase in the impingement length. This 
facilitates a clear comparison between the approaching G(/I),, a t  similar distances 
upstream of the edge. As shown in the inset of figure 16, three different values of 
impingement length are considered: first, that length a t  which the induced force is 
at a minimum during stage I1 (case (6)); secondly, that  corresponding to the middle 
of stage I1 where the force has an intermediate value (case (c) ) ;  and thirdly, that at 
which the maximum force during stage I1 is induced (case ( d ) ) .  The increase in 
amplitude of the streamwise velocity fluctuation a t  separation {u,,,(/3)},=,, with 
increase in force induced a t  the wedge establishes the link .between events a t  
impingement and those a t  separation : the strength of the dipole-like field a t  the wedge 
is directly manifested in the induced velocity field a t  separation. 

The most striking result of figure 16 is that, although the amplitude of the induced 
force exhibits a strong dependence on the impingement length, the r.m.s. amplitudes 
of the velocity fluctuations ii(/3)M1 in the region upstream of the wedge are nearly 



324 S. Ziada and D .  Rockwell 

7 
7 
I 
I 
I 
I 

b 

[ b )  

bA 

I -  

d 
4( 

I ' ' ' 10-0143 
50 60 70 

l I 1 , I I I I I  

40 30 20 10 0 

(L-x)/eo 

FIGURE 16. Streamwise evolution of maximum fluctuation velocity C(/l)M1 for three impingement 
lengths corresponding to stage I1 oscillations. Shown in the inset are details of stage IT oscillations: 
variation of force F,,, ; variation of fluctuation velocity at separation (C(/l)Ml)s=O; and variation 
of frequency p of oscillation with impingement length. 

the same for all three cases ( b ) ,  (c), ( d ) .  Despite the different initial values of G(/3),, 
a t  separation, {G(/3)Ml}z+ the occurrence of amplitude saturation of the disturbances 
a t  locations upstream of the leading edge of the wedge makes G(P),, values nearly 
equal. Consequently, variations of the r.m.s. amplitudes of the incident velocityfluctuations 
are not the source of the large (relative) variations in magnitude of the induced force. 

These observations strongly suggest that  the local vortex-wedge interaction is 
linked to the variation of induced force amplitude with impingement length. In  
examining this aspect, consideration must be given to the possibility of different 
vortex-leading-edge interaction mechanisms as the impingement length is varied. 
This effect of variation in interaction mechanism is considered in 36.2, which first 
addresses the sensitivity of the interaction mechanism to very small changes in 
transverse position of the centre of the vortex to the leading edge of the wedge a t  
a constant value of impingement length; then the interaction mechanisms a t  zero 
offset for varying impingement lengths are studied. 

6.2. Effect of vortex-edge interaction pattern 

Selected flow-visualization photos showing the nature of the vortex-wedge interaction 
mechanism (using hydrogen bubbles) are reproduced in figure 1 7 .  The impingement 
length for the three photos is the same = 58)  whereas the values of €/OR are 
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FIGURE 17. Visualization of effect of transverse location c/oR of wedge at constant 
impingement length (LIB, = 58) on vortex-wedge interaction patterns. 

different ; e represents the transverse or geometric offset of the leading edge of the 
wedge from the elevation of the upper surface of the splitter plate, and OR is the 
momentum thickness just upstream of impingement (B,/B, = 1.32). All photos 
represent the same instant of the force cycle, i.e. zero force, as illystrated. 

The first photo of figure 17 (photo &; e /B ,  = 0 2 )  indicates the passage of the larger 
part of the severed vortex under the wedge; the second photo (photo R ;  el& = - 1.0) 
portrays the vortex whilst in the process of splitting into halves above and below 
the wedge; and the third photo (photo S; e / B R  = - 1.6) illustrates the escape of the 
larger part of the incident vortex above the wedge. A secondary vortex forms, with 
opposite vorticity to that of the incident vortex, a t  the lower side of the wedge. This 
secondary and opposite vortex seems to be stronger for values of negative offset. 

Extensive measurement of the fluctuating velocity distributions immediately 
upstream of the wedge (L-XI@, = 8) indicated that the character of the approach 
vortex was essentially invariant with offset e, thereby providing essentially identical 
vortex structure for all cases (Ziada 1981). Moreover, the frequency of vortices was 
found to be invariant with offset e, agreeing with the somewhat analogous study of 
Hussain & Zaman (1978). This invariability in the frequency p of oscillation and 
amplitude of the streamwise fluctuation velocity approaching the wedge (i.e. 
saturation value of S(p),, and i I (P)MB)  is shown in figure 18, which also shows the 
variation of the induced force F,,, and the maximum r.m.s. amplitude (u"(P)M1)3=o 
of B a t  separation with the wedge offset e /B,  for the same impingement length 
(LIB, = 58) as that for figure 17. It is evident that  substantial variations in amplitude 
of the induced force arise from small changes in wedge offset of the order of magnitude 
of one local momentum thickness. The details of vortex-wedge interaction patterns, 
force and velocity measurements, and the nature of the shed vortex are given in a 
related article (Ziada & Rockwell 1982a). The point of note is that, since the approach 
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FIGURE 18. Variation of force F,,,, and maximum fluctuation velocity (ZZ(&~)~-,  at separation 
with transverse location F of wedge at constant impingement length (LIB, = 58). 

vortex was found to have identical characteristics for the range of c examined, i t  is 
the localized interaction patterns shown in figure 17, rather than variability in the 
nature of the approach vortex, that  result in these large variat'ions in amplitude of 
the induced force. 

It should be noted that,  as shown in figure 18, the variation of the induced velocity 
fluctuation ({ii(P)M1}Z=O) at separation with wedge offset €/OR follows that of the force 
F,,, variation, thereby linking together the upstream influence of local interaction 
at the wedge and the unsteady velocity field a t  separation. This upstream influence, 
in effect, corroborates the results depicted in figure 16. 

Based on these observations, it can be expected that,  as the impingement length 
L is varied at a constant value of geometrical offset, any flow mechanism that induces 
a small offset of the vortex relative to the wedge will yield a substantial change in 
the induced force. That is, for the case of variable impingement length L,  but constant 
geometric offset c, a 'self-induced ', or ' vortex-induced ' offset may result. This 'offset ' 
can be expected to be influenced by two parameters, namely the dimensionless 
circulation of the vortex and its initial posit'ion well upstream of the wedge. Rogler's 
(1974) model is relevant in demonstrating the influence of bhcse parameters. He 
considers the trajectory of a point vortex in a uniform strcam past the leading edge 
of a semi-infinit>e plate. Based on his results, a very small change in the vortex 
strength (dimensionless circulabion) and/or its initial position results in a significant 
change in the 'offset ' between the incident vortex and the leading edge of t'he plate. 
Although the vorticity in the laboratory vortex is highly distributed, the qualitative 
features of its trajectory upsbream of the edge should be describable via this 
point-vortex theory of Rogler (1974). These aspects are discwssed in further det,ail 
by Ziada (1981). 

In  conjunction with the visualization that' follows, i t  is appropriate to examine t>he 
magnitude of a characteristic unsteady velocity as the wedge is approached. The 
previously defined peak amplitude C ( P ) M 1  (see figure 9) is appropriat>e in characterizing 
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FIGURE 19. Definition of parameter y for characterizing vortex-wedge interaction 

the strength of the core region of the vortex as a function of streamwise distance 
upstream of the wedge (Ziada & Rockwell 1982a). As shown in figure 18, the 
fluctuation amplitude is essentially constant (flat) for a considerable distance 
upstream of the wedge; furthermore, the streamwise extent of this region of constant 
amplitude (i.e. extent of constant strength of the incident vortex) increases as 
impingement length increases. This means that the length upstream of the leading 
edge a t  which a vortex of given strength ‘appears’ increases with increasing 
impingement length : according to  Rogler’s analysis, the vortex trajectory will be 
altered accordingly. Consequently, in the laboratory, a different ‘offset ’ of the 
incident vortex can be expected to occur as the impingement length is changed. As 
noted earlier, this feature can be observed by comparing the photos ( b ) ,  ( c ) ,  and (d) 
of figure 6. 

In  characterizing the degree of ‘self-induced offset’ and its consequences for 
vortex-dge interaction as the impingement length is varied, i t  is helpful to use a 
parameter y defined schematically in figure 19. It should be noted that, characteri- 
zation of vortices from flow-visualization pictures is neither the object of defining the 
parameter y ,  nor of the present work. Clearly, the dashed lines of figure 19 do not 
necessarily bear any relationship to vorticity contours. However, the parameter y 
permits qualitative comparisons, a t  a specific instant of time, between vortex-edge 
interaction pattern and that pattern (i.e. reference pattern) which produces the 
maximum force amplitude. This reference pattern is shown in photo R ( e l &  = - 1.0) 
of figure 17, and corresponds to the maximum amplitude of induced force (figure 18). 
By comparing photos Q and S with photo R (figure 17),  i t  can be seen that as the 
parameter y shifts away from unity, in either direction, the force amplitude falls. 
Therefore smaller offsets of the vortex re1at)ive to the leading edge or, equivalently, 
y-values closer to unity result, in larger amplitudes of induced force. 

In  the flow-visualization pictures of figure 20, each impingement length is 
represented by two photos: the first photo is taken when the force is a t  a maximum 
negative value; and the second photo when the force has zero value. Spries ( a )  and 
( b )  of figure 20 represent the vortex-wedge interaction patterns for the same 
impingement length (L /8 ,  = 44), corresponding to t’he lovation of a frequency (and 
a force-amplitude) jump between stages I and 11. After t’he system oscillated for a 
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period in stage I, the flow was given a large perturbation and, after settling down 
to stationary conditions, oscillated in stage 11. Series (a) of figure 20 depicts stage 
1 operation corresponding to case (a) in figure 16, whereas series (b )  portrays stage 
I1 operation corresponding to case (b) in figure 16. By close inspection of these two 
series, one can deduce that the vortex centre in case (b)  is displaced above the wedge 
tip a larger distance than that for series (a) yielding ya  = 1.36 and Yb = 1.78. Thus, 
on the basis of the discussion in conjunction with figures 17-19, the induced force 
in case ( a )  must be larger than that induced in case (h) .  That this is so is evidenced 
in figure 16. By similar reasoning, the sudden decrease in force amplitude between 
stages I1 and 111 can be explained. The impingement length for case ( d ) ,  shown in 
figure 16, is L/O, = 62 (stage 11) just before the jump, and that for case ( e )  is LIB, = 65 
(stage 111) just after the jump ; the corresponding vortex-edgc interaction patterns 
arc series ( d )  and (e) of figure 20. The parameter yd ( =  1.27) is smaller than y e  ( = 1.77) ,  
indicating that the force in case ( d )  is larger that that  in case (e). This agrees with 
the measurements shown in figure 16. Relative values of y of Yb = 1.78 and Y d  = 1.27 
are likewise consistent with the relative amplitudes of the force in comparing cases 
(b)  and ( d )  of figure 16. Moreover, the longer impingement length (case (d)) produces 
a lower ‘offset ’ of the transverse vortex position ( Y d  = 1.27) than the shorter length 
(case ( b ) ;  = 1.78), agreeing with the aforementioned trend predicted by Rogler 
(1974). 

7. Comparison of overall oscillation characteristics with linear stability theory 
7.1 .  Exponential growth rate of disturbances 

The disturbance growth rates, the variable levels of initial disturbance amplitude, 
and the streamwise phase distributions of figures 15 and 16 can be considered with 
regard to their influcnce on the overall oscillation characteristics, and compared with 
concepts of linear stability theory, as well as with externally excited non-impinging 
flows. 

The measured rates of disturbance amplification for the aforementioned cases (b) ,  
(c) and ( d )  are compared in figure 16 with the predicted rates, using Michalke’s (1965) 
linear spatial theory. The dimensionless frequencies for the three cases approximate 
the frequency Pmax a t  which the shear layer is most unstable (p,,, =00167, 
Pb = 0.0172, p, = 0.016 and P d  = 0.015). Figure 16 shows good agreement between 
the measured and the theoretical rates. The agreement for case ( d )  is not as good as 
that for the other two cases, but the experimental data do show a lower growth rate, 
which is compatible with the linear-theory prediction. 

Concerning the saturation amplitude of G(p),, shown in figure 16, Freymuth 
(1966), using an externally excited non-impinging jet, has demonstrated that, for 
constant excitation frequency, the initial amplitude has no influence on the saturation 
amplitude. As shown in figure 18, the initial amplitude {ii(P)Ml}z=n is a strong function 
of E .  However, both the frequency of oscillation and the saturation amplitude were 
found to be invariant with c .  So, in essence, for the constant frequency of self-excited 
oscillation, the saturation amplitude of G(/3)M1 is independent of its initial value at  
separation, agreeing with the external-excitation study of Freymuth. 

7.2. Frequency of oscillation 

The phase data, shown in figure 15, illustrate the linear variation of the fluctuating 
velocity phase in the streamwise direction. This linear variation persists along the 
entire length of impingement from x = 0 to x = I, for all impingement lengths 
examined herein. Consequently, for each impingement length, velocity fluctuations 
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(of const>ant wavelength) convect, downstream a t  a constant speed. Comparisons with 
the linear theory show good agreement with the experimentally determined growth 
r a k s  (see figure 17) in the near field of separation. This indicates the dominant role 
of t>he separated shear layer a t  the high-speed side. I ts  instability characteristics 
determine not only the frequency of oscillation, but also tjhe phase speed and 
wavelength, which are virtually constant along the entire distance from separation 
t>o impingement. Further comparison with the linear &ability theory is obviously 
suggested to test ibs usefulness in predicting the frequency of oscillation. 

At) each impingement length, the wavelength h and hence the wavenumber 
(a, = 3nOm/h) can be determined from the criterion L/h  = n. Corresponding t'o that, 
wavenumber, the linear stability theory provides an average phase speed c .  An 
estimate of the osci1lat)ion frequency can then be obtained from the formula f = CIA. 
Figure 2 1 compares these predict'ed frequencies with the experimental results of figure 
4 (a ) .  The agreement for t>he first two stages is not as sat>isfactory as t>hat for the other 
stages of operation. However, the maximum deviation between theory and experiment 
is 14?,,, and occurs at) the beginning of stages I and 11. Based on this comparison, 
one can conclude t'hat tjhe linear t'heory, if incorporated with a proper st'reamwise 
phase criterion, can predict the frequency of oscillabion within an accuracy range of 
& 15 ",A. S o  greater degree of accuracy can be expected from such a simplified model, 
given the crudity of the assumpt'ion concerning the characteristic length Om and the 
complexity of the flow field. 

Figure 33 illustrates the dependence of the wavenumber and the phase speed on 
t'he impingement length. During each stage of operation tjhe wavelength and the phase 
speed increase continuously when t>he impingement lengbh is increased. I n  agreement 
with Hussain & Zaman's (1978) data, but in contrast with Sarohia's (1977) findings, 
t>he stages of operation are separated by well-defined jumps in both the wavelength 
and t>he phase speed. However, the gross trend of t>he phase speed variations (shown 
in figure 23 by the dashed line) agrees wit'h that  reported by Sarohia. He found the 
phase speed to increase steadily with an increase in the cavit>y length, without any 
discontinuity as the cavity switched modes of oscillat'ion. 

8. Summary and concluding remarks 
The impingement of an unstable laminar mixing layer on a solid edge leads to 

self-generation of strongly coherent organized oscillations. Immediately downstream 
of separation (at the trailing edge of the splitter plate), the mean-velocity profile 
resembles an asymmetric wake flow. The instability associated with the low-speed 
side is of considerably lower frequency and has a smaller growth rate than that 
associated with the high-speed side. Therefore the instability characteristics of the 
upper shear layer (i.e. a t  the high-speed side) dominate, determining the frequency, 
wavelength and phase speed of the system oscillation. This aspect is substantiated 
by the good agreement between the experimental growth rates and the linear spatial 
stability theory in the near field of separation, and by the non-existence of any 
instabilities associated with the lower shear layer. Non-impinging, artificially excited 
asymmetric wakes can be expected to exhibit similar characteristics. Obviously, these 
characteristics depend on two parameters: namely the thickness of the blunt trailing 
edge and the ratios of momentum thickness and free-stream velocity on either side 
of the wake. 

Phase measurements within and along the edges of the mixing layer demonstrate 
a number of possible interpetations of streamwise phase distributions and phase 
differences between separation and impingement. Only phase distributions along the 
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upper and the lower edges of the mixing layer seem to have an obvious significance. 
They vary linearly in the streamwise direction, provide the same phase difference 
between separation and impingement, and yield a universal phase criterion. For a 
self-sustained oscillation, the phase shift between velocity fluctuations at separation 
and impingement is found to  be about 3nn, where n is the stage number. I n  other 
words, the disturbance wavelength h and the impingement length L maintain an 
integral relation L/h  = n for the whole range of the impingement lengths examined. 
Moreover, the phase speed a t  which the disturbance travels in the shear layer, 
deduced from these streamwise phase variations, exhibits discontinuous jumps as the 
system switches modes (or stages). 

I n  spite of the large transverse variations in the phase of fluctuating velocity, the 
overall phase across the shear layer a t  any streamwise station reduces to approxi- 
mately n. This transverse phase criterion is found to persist along the entire length 
of impingement. At the trailing (separat,ion) edge, the upstream imprint of the 
self-sustained oscillation is manifested in a rr phase difference a t  edges of the upper 
and lower shear layers, and extending .into the free stream. Furthermore, 
corresponding locations in the upper and lower shear layers are also approximately 
rr out of phase. This compatibility between the downst’ream dynamics and the 
character of the trailing-edge unsteadiness may have significant consequences for 
non-impinging shear layers as well. 

Prediction of the frequency of system oscillation (within f 15 % accuracy limits) 
can be achieved with the aid of the linear stability theory if incorporated with a proper 
streamwise phase criterion for sustained oscillations. The use of the linear theory of 
parallel flow to provide an average value of phase speed is justified by the linear 
variations of the streamwise phase distributions measured a t  the edges of t’he shear 
layer, indicating that the wavelength (and consequently the phase speed) is constant 
along the entire length of impingement. 

The velocity-fluctuation amplitude a t  separation is approximately proportional to 
the force induced at  the edge. If the induced velocity fluctuation a t  the trailing 
(separation) edge varies in amplitude while the oscillation frequency is held constant, 
the equilibrium level of fluctuation in the downstream (nonlinear) region of the shear 
layer takes on essentially identical values. This, in agreement with previous 
investigations of artificially excited, non-impinging jet flows, implies that  the 
‘ strength ’ of a self-sustained oscillation must be carefully specified in terms of either 
the saturation level of velocity fluctuations or the magnitude of the induced force at  
a given oscillation frequency. 

The fact that  the induced force a t  the edge takes on substantially different values 
for essentially identical fluctuation level of the approach flow is associated with the 
varying nature of the vortex-dge interaction mechanism. Small ‘offsets’ of the 
incident vortex, relative to the edge, of only one moment’um thickness considerably 
alter the amplitude of the induced force. I n  effect, there are two means of producing 
vortex ‘offset’, The first involves transverse variation of the edge location at a 
constant value of impingement length. The second means might be termed a 
‘self-induced offset ’, arising in cases where the transverse location of the edge in the 
mixing layer is held constant) while the impingement length is varied; since the 
streamwise extent of the nonlinear saturation region increases as the impingement 
length increases, the essential consequence is alteration of the relative location 
upstream of the edge at, which vortices are ‘formed ’. This is equivalent to changing 
the initial position (i.e. point of ‘appearance ’) of the incident vortex with respect to 
the impingement edge. Vortices with different ‘ initial positions ’ approach the edge 
along slightly different trajectories. The result is a small alteration of the transverse 
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offset of the incident vortex, which in turn substantially alters the magnitude of the 
induced force. 

The well-known occurrence of frequency jumps as the impingement lengthscale is 
varied is shown to  be associated with substantial jumps in amplitude of the force 
induced on the wedge. In  turn, these abrupt alterations in force amplitude are related 
to the aforementioned vortexeedge interaction mechanisms. 

The authors wish to thank Professor M. V. Morkovin for his comments on the 
experimental results. Financial support was provided by the National Science 
Foundation of Washington, D.C., and the Volkswagen Foundation of Hannover, 
West Germany. 
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